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Abstract —In two-dimensional wave propagation and structural calculations, adjustments are made
at each time step to account for the rotation of the matenial. These adjustments rotate the stress
tensor ; rotate micro features, such as cracks, with the material; and provide an average rotation
angle for the material. Here the nature of the rotation problem and the inaccuracies inherent in the
standard Juumann method for cases of large shear are outlined. A direct method for obtaining the
rotation 0 of the cell material is described based on the works of Dicnes (dcrta Mech. 32, 217 232
(1979)) and of Marsden and Hughes (Mathematical Foundations of Elasticity, Prentice-Hall,
Englewood Chffs, New Jersey (1983)). Techniques are formulated for rezoning the quantities used
in the rotation transformation : one is an exact method based on the invariants of the U matrix:
others are approximations based on the components of the U and F matrices. To further explore the
nature of the Dicnes method, an exact method is developed for the rotation of lines or planes or

conditions of large shear strain {or isotropic and simple anisotropic elastic materials in which all
the matenial 1s assumed to rotate together. For materials in which yiclding occurs, the stresses are
correctly provided by the standard Jaumann method, although the rotation angle is not correct tor
large rotations. For multiple-plane models in which specitic planes tn the material are followed,
neither the Jaumann nor the Dicnes rotation treatments are approprite.

1. INTRODUCTION

Rotation adjustments that are made at cach time increment in two-dimensional wave
propagation and structural calculations should account for three effects.

(1) The stress tensor is transformed to account for the material rotation.

(2) Micro features, such as cracks, are rotated with the material.

(3) To aid in understanding the results of caleulations, the average rotation of the cell
material is computed.

Treatments for these rotation topics are reviewed in the present study. Because the con-
ditions that cause large rotations also require a rezoning treatment in the calculations,
mcans were examined for combining a precise rotation procedure with rezoning. Then a
study was made to determine which types of material models and which kinds of problems
require rotation adjustments.

In the last two decades it has been generally recognized that material rotation must be
accounted for in stress—strain calculations, or the computed stress tensor will depend on its
coordinate system. At present, rotations are commonly accounted for by using the Juumann
rotation rate computed from the coordinate motions of the computational cell

Ax = (Puidy—0v/éx)AL)2 (n

where Ax is the increment of rotation in radians, and « and ¢ are coordinate velocities in
the x- and y-directions. In wave propagation codes such as HEMP by Wilkins (1964), these
rotation corrections arc made by transforming the stress tensor in each cell through the
angle — Azx so that the tensor remains in the fixed external coordinate system as the material
rotates. This Jaumann rotation correction has recently been found to be appropriate only
for small shear strains (see, ¢.g. Dienes (1979)).
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To indicate the nature of the approxiamation involved in egn (1), consider a block
subjected to simple shear, as shown in Fig. [(a). The block is sheared by moving points 2
and 3 by vAr, From egn (1), the rotation is

Ax=_ . (2)

The diagonals of the square rotate by this amount, Yet line 03 rotates by (vAn)/(Ay) = 2Ax.
and line 01 does not rotate. Hence, the combination of shear with rotation appears to
produce a complex state in which different elements rotate differently. Thus Ax from egn
(2) is only an “average” rotation for the material.

For an example of the difliculty with lurge rotation problems, consider the case where
the mcremental motion in Fig. [(a) gives an angular change of Ax = 1 | Then continue the
motion for 180 increments. Line 03 rotates by about 27 per increment initially. But as it
moves from the vertical, the angular change per increment reduces. Line 02 initially rotates
by Ax per increment ; henee, the rotation of this line matches the “average™ rotation. But
this lne also moves away from 45 and so thereafler its rotations are less thun Ax per
increment. The state after 180 of motion is shown in Fig. 1(b). Equations (1) and (2)
would give a total angular change of 180 . Yet from Fig, [{b). it is clear that none of the
bounding lines rotated more than 907, so the average rotation must be less than 45 (The
actual average rotation is about 38 )

In the foregoing discussion the rotation could be viewed as following crystallographic
planes on which the stress acts or as simply {ollowing material lines, Thus, it is assumed
that the stress tensor follows these plancs or lines. Therefore, the stress rotation caleulations
are made to follow the motion of the planes. However, as pointed out by Drucker (1985).
when plastic slip occurs in the material, the crystallographic planes do not follow the
muacroscopic motion of the material, This ambiguity between the macroscopic motion and
the rotation of the planes is illustrated in Fig. 2. The upper part of the figure shows a large
shear flow within a crystallographic material with vertical slip lines. Here, for an average
differential rotation of Az, the lines rotate by 24z, and the stress tensor should rotate with
these lines. In the lower part of the figure, the shp occurs along the horizontal lines and no
rotation occurs 1 the lines, From the usual macroscopic description of the cell and of the
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arg horizontal.

Fig. 2. Alternate patterns for slip in a crystal with consequent effects on material and stress rotation.

material, one cannot distinguish between these two responses of the material to shear. It
would require a detailed theory of plastic Hlow that includes the rotation of the individual
plancs in the material (and theretore the development of anisotropy) to distinguish the two
behaviors shown in Fig. 2. In the following sections it is assumed that the material remains
homogencous and isotropic throughout the flow, and Drucker’s important physical question
is temporarily disregarded. His point will be returned to in Section 7.

This paper first presents a review of three recent analyses of the rotation problem.
Steps for conducting the analysis are recommended and methods for rezoning the quantitics
needed in the rotation procedure are discussed. The procedure for the rotation of lines and
of the stress tensor are derived scparately. Finally, through use of the procedure, the
conditions under which the procedure is important are determined.

2. BACKGROUND

Recent work has been done by Dienes (1979), Marsden and Hughes (1983), and
Hallquist (1983) in determining the appropriate transformations to undertake to handle
the rotation of material undergoing large shear deformations.

Dienes (1979) has developed a three-dimensional analysis for material rotation, con-
sidering the corrections required to transform the stress tensor and determine the correct
angle. The analysis was applied to elastic material initially ; however, he has noted that the
concept is appropriate for any rotation, clastic or plastic. His corrections to the stress tensor
take the same form as the Juumann equations

6 =6—Q0+06S2 3)

where @ is the stress rate tensor corrected for rotation, 6 the stress rate dircetly from the
constitutive equation, and € the tensor representing the angular velocity of the material

Q =RR" (4)

where R is the rotation tensor (defined later). Figure 3 (from Dicnes’ text) shows that .
grows monotonically with shear strain when Dienes” correction is used, whereas with the
traditional Jaumann method the stress oscillates for very large strains,
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Fig. 3. Comparison of shear stress and angle of rotation computed by the methods of Dienes and
Jaumann in simple shear.

The method outlined by Dicnes (1979) is now considered in some detail for determin-
ing the rotation of the material of a cell from the locations and velocities of the material.
He begins with the deformation and velocity gradient matrices. The problem is solved for
the general three-dimensional case, but attention is restricted to a two-dimensional problem.
First a description of his solution is presented, then a method based on the development,
and tinally the numerical procedure he recommends.

Dienes” method begins with the deformation matrix F with components

(5)

where X, is the current coordinate and &, the original Eulerian position. Next Dienes derives
the material rotation Q from the vorticity W, left stretch matrix V, and the deformation
rate matrix . The vorticity and deformation rate matrices are both obtained from the

velocity gradient G

Cu
G = - 6
T e (6)

where u, 1s the velocity in the ith direction. As Dienes also shows, G is related to the
deformation gradient as follows:
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G =FF". )
The deformation rate matrix D is
D, =1.2(G,+G,) ®
and the vorticity W is
W, =1/2G,-G,). 9

The vorticity is the rotation quantity customarily used with the Jaumann rotation com-
putation.
The left stretch matrix V is named for its position in the defining relation

F=VR (10
where R is the rotation tensor. To compute V., he forms the product B

B = FF' (i
from which he derives V by the method of Bellman (1960)

V=RB'" (12)

The rotation tensor R is obtained by inverting eqn (10)

. cosll —sin(
R=V 'F= . (13)

sinf)  cost)

With this definttion of the rotation tensor, the rotation is positive counterclockwise. From
the D and V matrices he defines two more matrices

Z=DV-VD (14)
and
S=(ltr(V)-V] " (15)
His angular velocity of the material axes, @ (=€Q,)) is then given by
w= Wy +85,Z,,. (16)

Thus the SZ term acts as a correction to the rotation W which is customarily used in the
Jaumann rate equations.

In his paper Dicnes gave the following steps for computing the rotation in a computer
code, but did not reccommend this procedure.

(1) Compute the current F" and G"*'? from the nodal positions and velocities.
Evaluate D"* ' 2 and W"*' * from G"~' *. Here n refers to the beginning of the time step,
so quantitics labeled n+ 1/2 are defined at the middle of the time step.

(2) Compute V" from the square root of FFT (eqns (11) and (12)).

(3) Compute R" and 6" from eqn (13).

(4) Compute S"*"?and Z"*"* from V" and D"* ' * (eqns (14) and (15)).

(5) Compute w"*' * from eqn (16).

3A3 24:7.p
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Thus procedure requires computation of the F matrix (hence, storage of the original Eulerian
coordinate 7). The time consuming steps are the computation of the square root of FF'
and the matrix inversion for determintng S. The procedure is very accurate.

Dicnes recommended a second procedure with the following steps.

{1y Compute G"~ ' “and then W'~ from G" ' * (eyns (6} and (9)).

(2) Compute Z"" ' * from V" and D" '~ (eqn (14)).

(3) Calculate S” from V" (eqn (15)).

(4) Obtain V"' * from G" "' V" — V" (W" "' 2187~ ! ) (Dienes” eqn (7.5)).
(35) Update V"~ ' from V™and V"' .

(6) Compute the angular velocity o from eqn (16).

This method requires storage of V, but not of the original Eulerian coordinates. The lengthy
calculation ts the matrix inversion in step 3. This second method is also very accurate. Note
that in both of these approaches Dienes gets the rotation quantity o = ¢ explicitly. and in
the first method, € and R are also obtained.

Marsden and Hughes (1983) have suggested a simplified way to obtain the stretch
matrix from the B matrix. Instead of computing V, they obtain the right stretch matrix U,
This matrnix is defined by

F = RU. (17)
They begin the computation by forming the product matrix €

C=F"F (18)
Then U is given by

U = C+ Jdet . (19)
\/(lr(f + 2y (det C))

Thus their method has the following steps.

(1) Compute F" from G ' and F” from eqgn (7), and evaluate F7' ' = F' 4+ At
(2) Compute U™ from F*' P as inegn (19).
(3) Compute R "= F7r iy hy 4

Marsden and Hughes do not explicitly compute 0 or ¢ beeuse they are not needed for the
rotation of the stress tensor.

Hallgquist (1983) uses the method of Marsden and Hughes (1983 in his NIKE2D code.
In this finite element code he computes the R, R™ ' and R”7 ' rotation tensors, With R”
he rotates the imtial stress tensor ¢ from the external coordinate system to the material
oricntation. The strain increment Ag” "' 7 is rotated to the material orientation with
R”"'2 Then ¢ ' is computed by the material model, and the stress tensor is transformed
buck to the external coordinate system. R is not stored between cyeles, so the three-step
procedure above is performed three times at cach cell and cach cycle.

From the foregoing it appears that there are procedures availuble to transform the
stress tensor and to follow the rotation of the cell material. However, it is not clear how
these methods can be used under conditions tn which rezoning is also being used. The
rotation procedures with rezoning are examined in a later section.

I AVERAGE CELL ROTATION IN TWO-DIMENSIONAL CALCULATIONS

In this section a practical means for performing the rotation caleulation is developed.
Later, in Scction 7, conditions for which this procedure is appropriate are considered. The
following requirements will be considered for judging the system to be practical:
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{(a) only the current nodal positions and velocities are required. but not a history of
these quantities ;

{b) the system should minimize the computational time and the additional storage:

(c) the system must permit standard rezoning procedures to occur, that is, rezoning
should not disturb the rotation calculation. and the new variables required (if any) must
be rezonable.

The method proposed here begins with the computation of the matrices G™*'~,
F"~':. and F"*'. Then 0 is computed from the polar decomposition theorem. From 8 and
the stored value of 6, the increment A is computed. The rezoning aspect of this calculation
is treated in the next section. Here the definition of the deformation matrix F. the com-
putation of 8, and tests of the procedure are examined.

3.1. Deformation matrix calculation

The deformation matrix defined in eqn (5) must be determined in a way that is natural
for the finite-difference codes. To begin, the current coordinates X, are written as functions
of the tnitial coordinates (& and n) and time

X, =/ (20)

and this function is computed by fitting it to the nodes around a cell at some time. A single
functiion F is required that represents the cell material, yet the function must be fitted to
the A nodes around the cell. For this fitting purpose one could define the function X, the
X, value at the & th node, by the serics

-2

Y=+ dnSHAm+ 408+ A448 + A+ (210

where A, are constants obtained by the fitting process. By differentiating eqn (21) for X,
with respect to & or g, the deformation gradient £ is obtained according to eqn (5). For a
four-node cell, these components of Fare

F OX Xy =X
= g T e
¢ Ay + A,y
L S N A SR 14
146137713628
Fip= = R
(’) A(,‘*‘/‘]
A . .
r (O N AT E PR S FY/ N
Ty o= o =i a2l
g Ay+ 4,
. Oyl —néag ”
= =g e (22)

oy Ag+A,

where x,, = X = Xp Eun = E—Ene and mand n refer to node numbers. The A, and A,
factors are the arcas of the cell at the beginning and end of the increment. Clearly, in this
mcthod the original coordinates &, and 1, must be retained for all cells. Yet these original
coordinates are not rezonable quantities, so this method of computing F cannot be used
with rczoning.

An alterniate method for determining F is to start with an initial value, and update it
at each time step in the caleulation using F computed from eqn (7)

";nrl,lzcnvl,'t(FAl)n (23)

where n indicates that these matrices are from the ath time step. The F factor is not exactly
centered in this calculation. The F at the next time step is calculated using F
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Foli=F+F" A (24

This second method. using F, seems the most direct. but requires storage of F from the
previous cycle. This method of computing F is chosen for the procedure.

3.2. Computation of the rotation angle 8

For computing the rotation angle 0 the left and right stretch matrices V and U, and
the rotation tensor R are considered. Because of the symmetry of V and U. and because R
represents a counterclockwise rotation of 6, one can recognize that one can write these
matrices in the following way:

. ;’H I"l‘ L";{ (/ng cos# —sin G}
V= L U= and R=| ) 25
[ruz I’::} v [U,: Uy, an sinf cosU (23)
Equations (10) and (17) can be written out term by term and solved for the unknown

components V, U, and R

Fiy

Fl: = - V” Sin ()+ V|:COS() = (.130050"(':: Si“”

Procos@+Fsinl = U, cosli—U.sindl

1l

Fsy = Vyscost+Vagsin = Uy sinll+ Uy cosl
Foo= —Vsinfi+ 1V, coslh = U sinf+ U cos {26}

The solution of cither set of four simultancous equations leads to

O
tanll = =~ S
Foo+Fsy

(27)
The angle ¢ can be obtained with the arctangent function or, for small angles, with the
series expansion for arctan (),

To find the rotation rate o, the current orientation ¢ of the material is first computed
from tan 0 {cqn (27)). Then

W L (28)

where 8, is the orientation at the previous cycle.

3.3, Computation of V. U, and R

For the rezoning procedures considered later it may be necessary to obtain the V and
U matrices, and the R tensor. If these are of interest, one can proceed as follows. The sine
and cosine fuctors in R can be computed from components of the deformation matrix,
using cgns (26)

["'1 ‘—[: 4
sinfh = . MO (29a)
VU =F) +(F 4+ Fa)0)
cosl) = Fothe (29b)

V(Fsy —F )+ (F +Fy)?)
With the sine and cosine available, one can simply solve for the V components from eqns
(26)
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Vi =Fy cos@—F,,sinf
Vi, = F, sinf+F,,cos8
= F.,cos@—F,,sinf

Vi = Fy sinf+ Fy,cos . (30)
The U components are
U” = F||C050+F:| SinO
(/'|: = -F” Sin0+F2|C050
= F|:C050+F::Sin0
L/I:= —F|:Sin0+F:2COSO. (3‘)

An alternate procedure to the above would involve using Hughes™ method of finding U by
taking the square root of F'F: the results are identical.

3.4. Summary of the method

[n summary, the strategy suggested for two-dimensional problems differs slightly from
those of Dicnes and Hughes. One is interested mainly-in obtaining the rotation angle 6 and
the increment Af. In this method it is necessary to store the full F matrix and the rotation
0. During cach time step one makes the following computations.

(1) Compute G (eqn (6)). and evaluate I (eqn (8)) und W (eqn (9)) from it.

(2) Using G and the stored F, compute F (cqn (23)), and cvaluate the current F matrix
(egqn (24)).

(3) Compute tan 0 (eqn (27)) and cvaluate 0. Adjust 0 as needed to account for the
ambiguity of the arctangent,

(4) Compute the increment of rotation from A0 = -0,

(5) Perform the stress rotation calculations using Af) in the same way that one generally
used W..

The stress rotation calculations have the form

O = 00— 26.\'}‘0A0

Gn’ = ay_r() + 20,:)-(lAl)

”.‘: = 0'_._."

Ty = G+ (Texo— U_;-;-())AU- (32)

This new procedure requires five storage locations pzr cell (four £ and 0) in addition to
those for the usual Jaumann computations. The computation time for the procedure is
mainly taken by the additional square root (eqn (29)) and the arctangent.

3.5. Tests of the rotation procedure

A number of tests were made on the foregoing rotation procedure to evaluate its
accuracy and speed, and especially to determine whether it works correctly for very large
angles. The following problems were run.

(1) Apply a uniform tension to a body and then gradually rotate the body, computing
the current stress tensor at cach step. This is a rigid body rotation so the angle and stress
tensor should be obtainable even using the Jaumann method with m = W,,.

(2) Extend a block gradually while rotating it. This problem includes some rigid body
rotation, yet is a more complex test. The results should maitch those of test | at the end
point.

(3) Shear a block in simple shear and follow the computed orientation 0 and the stress
tensor.
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Fig. 4. Comparison of shear stress computed incrementilly by the proposed method with the exact
solution.

(4) Shear a block during rotation and follow the orientation and stress tensor.,

These tests were all performed using the foregoing procedure. In cach case 400 steps were
uscd and the stresses and orientation 0 were examined at several intermediate steps as well
as it the end. The rotation was through an angle of 360 . In all cases the value of ¢ obtained
wias within 0.1% of the exact value. The error was found to be directly related to the
imposed angular increment. The stress computation obtained in simple shear ts shown in
Fig. 4, and compared with the exact solution of Dienes.

4. REZONING OF THE ROTATION QUANTITIES

During a luarge distortion computation it is usually necessiry to rezone the cells, that
is, Lo construct & new mesh with less distortion in the individual cells, After the new mesh
is constructed, the properties in the old cells are assigned to the new cells. Generally, each
new cell will contain some material from two or more of the old cells. The properties
{energy, pressure, stress tensor, yield strength, plastic strain, ctc.) of the mixed materials in
the new cell are computed by weighting cach property according to the mass contributed
by the old cell. For example, property P is computed from

.
S m Py
ko«

&

y omy

ko |

D —
[ncw_

(33)

where my is the mass contributed by the kth old cell to the new cell. This mass-weighting
method is essentially an averaging technique, and thus it causes some smearing of the
propertics during rezoning.

To fit into the rezoning procedure, it is essential that the variables used in the rotation
calculation be rezonable in a manner like that in egn (33). The matrices F and V (or U),
and the scalar € have been sclected as candidates for rezoning. The angle 0 is scalar and
represents a physical quantity which can be appropriately averaged in combining propertics
from two groups ; hence the angle is rezonable.
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The stretch matrices each represent the state of distortion in the cell material. Following
Dienes (1979), they can be diagonalized as follows:

U=TAT"! (34)

where A is diagonal. and T represents an orthogonal transformation. Hence the fundamental
information contained in ¥V or U is A,,, A... and the transformation angle x associated
with T, where

Tz[c?sz —sinx:I' (35)
sinx  cos«

These three quantities (A,. A... and x) meet the criteria for averageable quantities, and
therefore are rezonable. An alternate set of independent quantities are the trace and deter-
minant of U, and the angle a. Here the determinant of U has the physical meaning of the
exponential of the areal strain, and hence, it is a quantity that one may especially want to
preserve during rezoning. The five quantities are all readily computed from the U matrix

traccU =trU = U| + L/:: (36)

determinantU = detU = U\ U5, — U3, 37
trU / I .

/\”.A::: zt\ (4(trU) —dC(lJ) (38)

= b U 39

x = 2aruan U..'—-U’;;' (39)

Similar rezoning results are obtained by using the set Ay, A, and x or the set tr U,
det U, and a. Following the rezoning of these invariants, the new U matrix is constructed
by computing U = TAT ' with the new A and T (from ) tensors,

The foregoing is clearly a lengthy procedure so it is worthwhile to form an approximate
mcthod. For a first approximation, one may choose to rezone the U,, components, yet
preserve the arcal strain (det U). To start the caleulation U is computed from F using cither
eyn (19) or (31). Then the areal strain factor 4 = det U is computed and a u matrix with
reduced components s generated

= U, A. (40)

These reduced u matrices are then used in the rezoning process to form a reduced matrix
for the new cell

ka Uil A
u,, = e 41)

Z.’”k

Next the determinant A, = det u,, is computed and the areal strain factor from the old cclls
is rezoned

n A
PR oy @

B Y my

Finally the U matrix for the new cell is formed
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U, = u,“\/(/?",.“‘). (43)

In this way the new U has a mass-weighted areal strain. This rezoning method was tested
for cases in which there were large rotations combined with either extension or shear. For
180 differences between rotations of the old cells, the U matrix components for the new
cell were all within 1% of the exact value for the extension case and within 10% of the
exact value for the shearing case. For the usual strain and rotation levels, this procedure
should be satisfactory.

A simpler and faster rezoning approximation can be made by rezoning the F com-
ponents directly. The determinant of F also equals the exponential of the areal strain. so
one can preserve the areal strain using a procedure like that above. As with the U matrix,
one starts by calculating the reduced components of F for the new cell

i
Z"lkF,,k/V' Al\'

F, — (44)

The areal strain factor for the reduced F matrix is computed: 4, = det F,,. Then the
components of the F matrix for the new cell

F,=F, J(A/d). (45)

Rezoning tests with the F components showed that nonsense was obtained when old cells
with rotations that differed by 180 were used. Errors of approximately 10% in the F
components were obtained when the rotations of the old cells were within 45 | for cither
cxtension or shearing. Henee, the use of F in rezoning could only be considered satisfactory
for Cairly small angular differences between old cells.

Based on these initial observations a two-branch plan for rezoning was developed,
depending on the range in the rotation angles in the old cells contributing to the new cell.

(1) Cells with angular differences less than 207 mass weight the components of the K
matrix.

(2) Cells with large angular differences : derive the U matrixand 0 for cach contributing
cell. Mass weight U and 0. Then recover F for the new cell.

5. EFFECT OF YIELDING ON ROTATION

For material that may yield and remain isotropic, the same rotation procedures can
be used as for the elastic material. However, the continued straining tends to eliminate the
errors in the stress transformation, so the stresses are accurate whether or not they are
correctly transformed. The results of an ideal plastic caleulation of simple shear with a yield
strength of 20% of the shear modulus gave the results shown in Fig. 5. The very large yield
value was used to emphasize the importance of errors in the rotation transformation.
The exact and Jaumann solutions for stress in the presence of yielding are essentially
indistinguishable. However, the angle calculation for the yielded case by the Jaumann
method still has the inaccuracy illustrated in Fig. 3(b). Hencee, if the rotation angle is not
nceded, the Jaumann solution is very satisfuctory for yielding in isotropic material.

6. DEVELOPMENT OF THE ANALYSIS FOR ROTATION OF LINES

The rotation analysis is developed first for the motion of a line in a lincar velocity field.
This result is applied to the rotation of material features such as microcracks. Then the fine
analysis is applied to determine the average rotation of a block undergoing large shear
deformation.

A line segment L in a lincar velocity field will be stretched (or shortened) and rotated.
Consider here only the rotation aspect. The rotation rate di)/ds is given by the dot product
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where 7 is the unit normal to line L, § is the displacement of one end of the line with respect
to the other, and L is the line length. The lincar velocity field is written in terms of velocities
w and ¢ in the x- and y-directions. Then dd/dt can be written in terms of the x- and y-
coordinates and the Ax and Ay lengths of the line

|08 QuAs+@ufdp)Ay | < @e/0x)Ax+ @Pefdy)Ay

R ki S el Al dinc'd
(L] dt |L]| [L|
,,<0u o 0+0u in0 )47 N P ar o 0 (47)
i (7.\‘(' S oy sin J 0"‘4. st + aysm

The angle 0 is the angle of the line with respect to the x-coordinate, measured positively
counterclockwise. Similarly the normal vector 7 is

n=1sinf—jcosd. (48)

When the expressions for dd/dr and 7 arce placed in eqn (46), the increment of rotation is
obtained

do cu u . . ov , or
4 = "o Sin Ocos 00— i sin“ 0+ 3,008 0+ 3 sinfcos 0. (49)

Equation (49) is uscd to obtain the rotation for lines or other line-like features in two-
dimensional calculations.

Now consider the rotation of several lines in a block of material as a means of obtaining
the average rotation of the material. Assume that the block has a large number of lines
drawn on it. Then the block is sheared and the motion of the lines is followed. If a simple
shear w = dx/dr = ¢u/dy is applied. then the rotation rate df/dr of a line originally at an
angle 0, from the X-axis is

SAS 24:7-G
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do in?0) dx g 50
= — SN = - St . 2
dt (SN dr 1 (50)

FFor a constant e, this equation can be integrated over time to obtain
cot) = cot ), + Ax (51)
or
A = 0 =1, = arccot (cot 8, +Ax) —10),. (52)

Now the average rotation for a cell can be found by finding the average Al for a large
number of planes. A sct ot 18 plances uniformly distributed from 0, = 0 to 170 was studied.
Simple shear strain like that in Fig. | was imposed in |7 increments for 180 steps. As shown
in Fig. 6, the rotations of the plancs varied from 0" to 115,

Next imagine that a number of lines during the shearing calculation had been tracked,
and the accuracy that could be achieved with this method was determined. First the use of
an orthogonal pair of lines is considered. The average rotations of pairs which were initially
orthogonal ranged from 36" to 80, compared with the exact value of 57.52 " = arctan n/2.
The accuracy of the average rotation gradually improved as sets of 4 lines and 8 lines were
considered. The average rotation for all 18 planes was 57.64 . This variation in the range
of average rotation angles is illustrated in Fig. 7. Hence, the correct rotation of the material
can be found by following the rotation of lines, but this procedure does not provide high
accuracy unless a large number of lines are used.

7. APPLICATIONS TO CONSTITUTIVE RELATIONS

The foregoing rotation calculations are intended for use with constitutive relations so
that the stresses computed are objective, that is, independent of the motion of the coordinate
system. The type of constitutive relation determines the information required from the
rotation procedure. Three types of relations are identified below.
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(1) Isotropic clastic material. For tsotropic material, the calculation can be conducted
cither by rotating the stresses to the material coordinates using the R tensor, or the stresses
can be incremented using A as in eqns (32). The results in Fig. 3 show the inaccuracies
involved in the stresses and the rotation angle by neglecting a precise rotation procedure.

(2) Isotropic plastic material. As noted in Section 35, for material that may yicld, the
same rotation procedures can be used as for the clastic material. The results of an ideal
plastic calculation of simple shear showed that the exact and Jaumann soltutions for stress
are essentially indistinguishable. However, the angle calculation for the yielded case by the
Jaumann method still has the inaccuracy illustrated in Fig. 3(b).

(3} Anisotropic material. For caleulations with anisotropic material it is necessary to
know the orientation ol the material coordinates. In such a material it is often assumed
that the material planes all rotate together, maintaining their fixed angular refationship
(under conditions of large distortion, this fixity ol angles is certainly not achieved according
to the results in Fig. 6). The rotation tensor R or the angles 0 and A are required for the
caleulation,

(4) Multiple-plane models. Models such as BERACT (Scaman er al. (1985)) and
SHEAR (Scaman and Dein (1983)) contain a series of internal plances that follow the
material motion. The rotation of these planes is computed correctly from the velocity
gradient matrix G according to the equations in Section 6. These models account for the
relative motion of several planes, and the gradual development of anisotropy. Hence, these
constitutive relations do not require any additional rotation treatment.

¥, SUMMARY

The rotation problem in two-dimensional calculations has been treated to determine
mcthods appropriate to finite-difference wave propagation calculations involving rezoning.
First, the nature of the rotittion problem and the inaccuracies inherent in the standard
Jaumann method for cases of large shear strain were outlined. A direct method for obtaining
the rotation (0 of the cell material wis outlined based on the works of Dienes (1979) and
Marsden and Hughes (1983). The deformation matrix F is stored for each cell. The current
angle 8 is obtained from

,:’I - F| b
tanf) = T 27
in Fi ¥ Fs 27)

Three methods were explored for rezoning the quantitics used in the calculation.
A theoretically exact rezoning method based on the invariants of the U matrix, and
approximations based on the U and F components are outlined. To explore further the
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nature of Dienes’” method. an exact method was developed for the rotation of lines or planes
in the material.

The rotation technique of Dienes is necessary under conditions of large shear strain
for isotropic and simple anisotropic elastic materials in which all the material is assumed
to rotate together. For matertals in which vielding occurs the stresses are correctly provided
by the standard Jaumann method, although the rotation angle is not correct for large
distortions. For multiple plane material models in which specific planes in the material are
followed. neither the Dienes nor the Jaumann rotation treatment is appropriate.
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